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AERONNJTICS

THEORETICAL LOSS RELATIONS FOR LOW-SPEED TWO-DIMENSIONAL-CASCADEITOW

By Seymour Lieblein and William H. Roudebush

The relations between wake characteristicsand total-pressure de-
fect were theoretically analyzed for the incompressibleflow across a
two-dimensional cascade of compressor blades. Equations for total-
pressure-loss coefficient both in an arbitrary downstream plane and in
a plane far downstream where complete mixing has occurred were developed
in terms of the wake momentum thickness and form factor at the arbitrary
plane. Results indicated that the total-pressure-losscoefficient for
unseparated flow varied almost directly with the ratio of wake momentum
thickness to blade chord length and with the solidity, and inversely
with the cosine of the air outlet angle.

Sample calculations indicated that the additional loss incurred in
the mixing of the wake is a function primsrily of the form factor of the
wake at the start of the mixing, and also that the mixing loss may be a
significant proportion of the loss at the trailing edge. The effect of
trailing-edge thickness was indicated to be possibly significant for
conventional compressor blade sections.

It was concluded from the analysis that the wake characteristicsof
momentum thickness and form factor constitute significant p=ameters for .
the presentation and correlation of two-dimensional-cascadeloss data.

INTRODUCTION

It is a difficult task to predict and control losses in @al-flow-
compressor design because of the complex three-dimensionalnature of the
loss phenomenon. For simplicity, the standsrd approach considers that
the complete loss in compressor blade rows can be constructed by prop-
erly correcting blade-profile losses for three-dimensional effects. A
necesssq first step in such an analysis is the determination of the
blade-profile loss. The basic blade-profile loss is considered to in-
clude the loss accrued in the mixing of the wake downstream of the blade.
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2 NACA TN 3662

The problem of theoretical loss estimation for blade profiles in-
volves first, a determination of the boundary-layer characteristicson
the blade surfaces and, second, a means of determi~ing the total-pressure
defect resulting from these boundary-layer characteristics. The first
part of the problem has received considerable attention (e.g., refs. 1
and 2), although certain difficulties still remain. The second part of
the problem, which is the concern of the present paper, has also been
investigated in references 3 to 5. These references show that analytical
relations between certain blade-wake boundsry-layer characteristicsand
the resulting defect in total pressure can be established for cascade
flow. The present paper continues the approach and presents a detailed
theoretical analysis of cascade loss and wake relations in terms of wake
momentum thickness and form factor. The anslysis is directed specifi-
cally toward establishing simplified equations and considerationsthat
may prove useful in the est-tion of profile losses and in the correla-
tion of experimental data in the low-speed two-dimensional cascade,
which is the primary source of compressor blade-profile data.

The analysis is made for incompressible two-dimensionalflow. Re-
lations sre obtained between the total-pressure defect and the wake
characteristicsat an arbitiary station between zero and about l+ chord

lengths downstream of the trailing edge. Both the total-pressure defect
up to the station and the defect for complete mixing are considered.
l?romthese relations, the various factors influencing the loss are de-
termined and their relative effects are evaluated.
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SYMBOLS

chord length, ft

form factor, 6*/0

pseudoenergy factor, k/0

pseudoenergy thiclmess, ft

exponent in power velocity profile relation (table I)

total pressure, lb/sq ft

mass-averaged decrease in total pressure, lb/sq ft

static pressure> lb/sq ft .

distance along outlet streamline, ft

blade trailing-edge thiclmess, ft
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()-tCTblade trailing-edge-thicknessparameter, —F Cos p

velocity, ft/sec

half blade spacing normal to axial direction measured from wake
centerline (y = O, fig. 1)

coordinate normal.to axial direction (fig. 1)

coordinate in axial direction (fig. 1)

angle of attack, deg

air angle (angle between flow direction and axis), deg

full boundsry-layer or wake thickness, ft

displacement thickness, ft

()

5
full-thicknessparameter, ; J&j

momentum thickness, f%

()

60
momentum-thicknessparameter, —z Cos $

%

v

Y

Y

z

a

mass density, lb-sec2/ft4P

solidity, c/2Y

for loss up to cascade measuringtotal-pressure-loss

(@2
station, 1 z

~ Pvl

coefficient

% total-pressure-loss

(@) 2
station,

; PFO z
>

coefficient

coefficient

for loss up to cascade measuring

total-pressure-loss for loss up ti20utlet plane based

(m)x Cos 13x

()
——

2 Cos ~
1 pvl
z

on air angle in outlet plane,

total-pressure-losscoefficient

on air angle in outlet plane,

for loss for c~mplete mixing based

(m)= Cos pxz
1 ()2 Cos pl
~ pvl

——— ——
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Subscripts:
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1

min

t

u

x

Y

z

o

1

2

=

lower surface

minimum

plane of trailing edge

upper surface

arbitrary outlet plane O to l; chord lengths downstream of trail-
ing edge

normal to axial direction

axial direction

free stream

inlet

outlet measuring
trailing edge)

station (1/2 to 1 chord length downstream of

far do%mstream where complete mixing has taken place

w
Y1
co

GENERAL CONSIDERATIONS

In subsonic two-dimensional-cascadeflow, losses arise from the
growth of boundary layers cm the suction and pressure surfaces of the
blades. These surface boundary layers then come together at the blade
trailing edge to form the blade wake, as shown in figure 1. As a result
of the formation of the surf~e boundary layers, a local defect in total
pressure is created and a certain mass-averaged loss in total pressure
occurs in the plane of the trailing edge.

Downstream of the trailing edge, a mixing takes place between the
wake and the free-stream flow, and the wake is eventually reenergize
through turbulent mixing. Inasmuch as a loss in total.pressure is in-
volved in the mixing process, the ultimate total pressure at a station
far do~mstream where conditions have become uniform will be less than
the average total pressure at the blade trailing edge. This difference
in total pressure is referred to as the mixing loss. The loss for com-
plete mixing represents the total loss attributable to a given wake pro-
file in the two-dimensional cascade.

“
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Although the losses encountered in the flow over the blade profiles
two-dimensional cascade can be expressed in various ways (e.g.,
coefficient, wake coefficient, total-pressure defect, entropy rise),

it is ultimately desirable, for the determination o-fcompressor blade-
row efficiency and entropy gadients, to determine the loss in total
pressure involved in the flow. This cannot as yet be done theoretically
because of the current inability to determine accurately the turbulent
viscous flow across blade sections. However, wherever the flow field is
separated clearly into a wake region and a free-stream region (as in
fig. 1), mathematical relations can be developed to express the loss in
total pressure as a function of the local properties of the wake. Al-
though this does not solve the problem of loss estimation (the boundary-
layer and wake parameters cannot be calculated accurately in all cases),
the approach does point out the relative influence of the various geo-
metric and aerodynamic factors on the resulting loss in total pressure.

In casiade loss analysis there are two stations of particular in-
terest: (1) the plane of the trailing edge and (2) the usual cascade
measuring station (about 1/2 to 1 chord length downstream of the trail-
ing edge]. Consideration of cascade losses in terms of the wake char-
acteristics at the blade trailing edge is desirable, because ultimately,
in the development of effective cascade flow theory (potentialflow and
boundary-layer theory), it should be possible to compute satisfactorily
the surface boundary-layer characterisfiics(momentumthiclmess and form
factor) at the blade trailing edge. Significant developments along
these lines are represented, for exsmple, by reference 6. A study of
the significant parametms determining the loss at the cascade measuring
station is also necessary so that the available expertiental data can
best be analyzed and correlated.

The analysis starts with a development of the general e~uations
for the loss in total pressure up to an arbitrary outlet station and
for the loss in total pressure after complete mixing. These equations
are expressed in terms of the wake characteristicsof nmmentum thickpess
and form factor at the arbitrary outlet location. The application of
these relations to two specific outlet locations, the plane of the
trailing edge and the usual cascade measuring

BASIC EQUATIONS

Assumptions

st&tion,-is then discussed.

The theoretical development of cascade loss relations is based on
the fundamental premise that, for short distances downstream of conven-

tional cascades (say, up to about l+ to 2 chord lengths), the outlet

flow in a plane normal to the axial direction of the cascade (fig. 1) .

. -. . ——-.- . ..-——.. —-.—-— _.. ,.-. .—. ...— .-— .——— —-—-—-.————-—
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can be divided into a wake region where gradients in total pressure
occur and a free-stream region where the total pressure is essentially
constant. In conjunction with this premise, the following specific as-

t?

sumptions are made: (1) the flow is two-dimensional and incompressible,
(2) the inlet flow is uniform across the blade spacing (y-direction),
(3) the outlet static pressure and flow angle are constant across the
entire blade spacing, (4) the outlet total pressure is constant in the
free stream outside the wake, and (5) the outlet free-stream total.pres-
sure is equal to the inlet total pressure. Under these assumptions, the w
variations in outlet velocity and pressure in an arbitrary plane normal

U-I
m

to the axial direction will appeax as shown in figure 2.
m

The validity of these assumptions varies with distance downstream
of the blade trailing edge. General cascade experience indicates that
they are sufficiently valid in the region covered by the present analy-
sis to provide results that are qualitatively correct. These assump-
tions have frequently been employed in cascade loss analyses (refs. 3
to 5).

Loss at Outlet Station .,

Development of equations. - For an outlet plane located at any dis-
7

tance between O and about l; chord lengths downstream of the blade trail-

ing edge, the mass-averaged loss in total pressure between the cascade
inlet plane (subscript1) and the general outlet plane (subscriptx) is
given by Y

J
Pvz,pxdY

(m)x = PI - -;

I

(1)

@J~,@Y
-Y

With free-stream total pressure-assumed constant between station 1 and
the general outlet station, the loss across the cascade is given by the
defect in total pressure in the outlet plane as

Y

J PVZ,X(PO,X -PX)W

(N)x = ‘y ~ v

J P z,xdY
-Y

From the Bernoulli equation for incompressibleflow,

P= p+;pvz

——.—.—

.

.—.

(2)

(3)

1

.
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Then, inasnmch as static pressure is assumed constant
blade spacing in the y-direction, equation (2) can be

“7

across the entire
expressed as

Q

f

(v: ~ - lf]vx Cos 13xdy
2 Y

(m)x= -y (4)
Y

J’
Vx Cos pxay

-Y
O-J
m
z With outlet angle px constant across the blade spacing, equation (4)

can be given, after expressing the velocities in terms of ratios, as.

A
(5)

Actually, since

tion in equation

Vx = Vo,x in the &ree stream, the limits of integra-
(5) can be restricted to the limits of the wake region

extending-from -%,Y to %,y (see fig. 2).

Since the nmmentum thickness is a basic parameter in all simplified
boundary-layer theory, it is desirable to express equation (5) in terms
of this parameter. This can be accomplished by expanding the inte~al
in the numerator to yield

The fo~oting definitions of wake characteristics

Displacement thiclmess:

are now made:

(7a)

— .- ——— ———
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Momentum thickness:

6’y=~’;~-+-j(;~dy

)

Pseudoenergy thickness:

(7b)

(7C) “

The integrals appearing in equations (7a) and (7b) are similar to the
standard boundary-layer-thicknessparameters, except that the integra-
tion path is normal to the cascade axial direction instead of being nor-
mal to the flow direction. These modified thickness parameters are.des-
ignated by the subscript y. Substituting equations (7) into equation
(6) then yields

(AF)x = ; Pvg,x
(2)X+(2)X- (,)

(),_T
xx

In equation (e)) VO,X is not completely independent of the wake

formation. The presence of the wake displacement thickness causes an
acceleration of the free-stream flow which is reflected as an increase
in the V; x term. This point can be brought out more clearly by ex-

pressing t~e loss in terms of the inlet dynamic head. l?romcontinuity,
for uniforniinlet conditions

J

Y

2Y pv~cos pl =
-Y

Dividing both sides of equation (9) by

tracting 2Y to the right side of the

Pvx Cos P#Y

Pvo,x Cos px

equation give

(9)

and adding and sub-

-–=-~’:w)dy‘1 Cos fll
2Y Vo,x Cos f3x

9

CA
o-l
u-l
UI

.
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Vo,x =
()
Cos pl

V1 —
Cos px

1- ()gx
.

Substitution of equation (10) into equation (8) then yields

2

()

Cos fll

Cos px

(lo)
.

The total-pressure loss, in this form, is a more explicit function of
the wake characteristics. Specifically, it is revealed that the mass-
averaged loss in total pressure in any outlet plane till depend on the
inlet dynamic head, the inlet and outlet air angles, and the ratio to
blade spacing of the wake momentum, displacement, and pseudoenergy
thicknesses in the outlet plane.

For analysis purposes in investigatingthe relation between total-
pressure loss and wake characteristics, it is convenient to use a loss
coefficient defined as

* (N)X Cos px’
()% = * ~v2 Cos 131

——

1

(12)

Ii L

from the more customary def-which differs in the term (COS ~x/cos ~l)z “

inition of loss coefficient given by

The definition of loss
throughout the present

(Z@)x

%Sn
~ Pv~

coefficient given by equation (12) will be used
analysis. Thus, equation (n) can be expressed as

-*
%

.

(13)

. —— -.-— -— .—. .— -..— —— —.—..—.— —.—— —
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Applied form. - For use in the analysis of cascade and compressor
data, it is desfiable that the derived loss equations be put in the k
applicable and significant forms. Sever~ factors can be consid-
in this respect.

In the previous loss equations, it is to be noted that the wake
thicknesses involved are defined in the plane normal to the axial di-
rection. However, inasmuch as one of the purposes of the development
is to permit the calculation of total-pressure losses resulting from
the blade boundary-layer growth, it would be well to express the loss
equations in terms of the conventionalwake thicknesses normal to the
free-stream flow. This can be accomplished by assuming that the thick-
ness of the wake or boundary layer in any plane (i.e., normal to the
blade surface or normal to the outlet flow direction) can be related to
the thickness in the plane normal to the axis through the cosine of the
angle between the plane in question and the normal plane. This relation-
ship will be valid as long as the axial gadients of flow in the wake
are not lsxge. Thus, in terms of wake thickness normal to the outlet
flow at angle ~, it is assumed that with little error

~.~cos~

8*+ COS$

k=~cosp

e=~cosp}

43

(14) “

Use will also be made of the definitions of wake form factor H and
pseudoenergy factor K given respectivelyby

.- H=>* (158)

K=; (15b)

Furthermore, it is desirable to express the blade spacing in terms
of the blade solidity u and chord length c, where u = c/2Y. Thus,
from equations (14), (15), and the solidity rela.tion,equation (13)
becomes

(16)

.

.

. — . — .—
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With the further definition of the wake momentum-thicknessparameter 8
given by

equation (16) for the loss coefficient becomes

(17)

(18)

As a simplification, it would be desirable if the pseudoener~ fac-
tor K could be expressed in terms of the form factor H. Accordinay,
values of K were investigated for several representative analytical
variations of velocity in the wake, as shown by the half-wake prdfiles
in figure 3. (It is assumed that the velocity profiles in fig. 3 are

P
symmetrical about the point of minimum velocity at y ~ = O.) The

power velocity profile, with minimum velocity ratio vtiJvo = o (fig.

3(a)), represents the form of the wake at the trailing edge. The other
velocity distributions are intended to represent possible wake profiles
some distance downstream where some mixing has occurred and V.in/Vo>O.

The thickness
5

.
~ of the half wake for the error-cmve profile (fig.

.

3(e)) was arbitrarily established as the value of

v/vo= 0.99. (The integrated values are those of

?
obtained from alJowing y ~ + ‘.) Equations for

are given in table I.

/
y; at which

the definite integrals

V/V. for the profiles

Computed values of K determined from equations (7b)j (7c), and

[

Mb) are shown u a function of H (computed from eqs. (7a), (7%), and
15a)) for the various analytical profiles in figure 4. Variations in

K and H were obtained for the power profile by varyhg the exponent
n and for the other profiles by vsrying the minimum velocity ratio
vmin/v& The equations for K obtained for the various profiles are

given in table I. Also shown in the figure are values computed from
experimental wake-profile data obtained in references 7 to 10. The data
of references 7 to 9 were taken approximately 1/2 chord length downstream
of the blades, and for reference 10, about 0.02 chord len@h.

Figure 4 shows that profile form should not be a significant factor
in the K-H relation. For values of H up to about 1.4, a maximum

.
difference of less than l~percent is indicated for the quantity (1 +K),

— — .. .—- ——.—..———- --.—- -—— — ---- -—-- —-— —-—--—.-—-’ — -
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and therefore for ~ in equation (18) for the various profiles consid-
ered. As will be indicated later, higher values of H, for which maxi-
mum differences in (1 + K) up to about 3 percent are indicated, will
generally occur only in the trailing-edge region where V~in/VO maybe

nesr zero. In view of these considerations, the K-H variation given by
the power velocity profile was adopted as the simplest acceptable approxi-
mation to the general K-H relation for use
selection is reasonably substantiatedby the
presented.

With K for the power velocity profile

the equation for the loss
becomes

H-I-1
K=3H-1

in the loss equation. This
limited .srperimentaldata

given by

coefficient from equations (18) and (19)

2HY

(19)

(20)

.
>

It is thus established that the total-pressure-losscoefftiient (as de-
fined by eq. (12)) in a plane downstream of the trailing edge is a func-
tion of the wake momentum-thickness parameter (as definedby eq. (17))
and the wake form factor.

( A plot of the calculated variation of ~ against (?X(from eq.

(20)) for a range of values of I& from 1.2 to 2.6 is shown in figure 5.

The plot of figure 5 reveals that ~ is only a secondary function of

H. In fact, for values of $x sabout 0.07 and values of Hx. about 2.0
(representativetrailing-edge values forunstalled flow), the loss coef-
ficient is essentially independent of the value of ~.

Loss for Complete Mixing .

The complete loss in total pressure attributable to a cascade blade
row is measured only at a station (subscript m) sufficiently far down-
stream for the flow to again become uniform across the blade spacing as
shown in figure 6. Since the flow is uniform in the y-direction both
far upstream and far downstream, the mass-averaged defect in total pres-
sure is given by

(m)= = PI - P“ = Po,x - P= (21)
.
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It is now desired to express (~~m in terms of wake and flow character-

istics in the general outlet plane. To do this, it is necessary to ex-
press the pressures in equation (21) in terms of velocities. The con-
version to velocities is achieved through the application of the Ber-
noulli equation and the equations for conservation of momentum in the
axial and tangential directions for the flow envelope bounded by the
streamlines a-a and b-b and by the outlet and far-downstreamplanes
in figure 6. The details of the development are presented in the
appendix.

With the definition of the loss coefficient for complete mixing
based on the air angle in the general

—* (N3.
(J” —-,x =

; p<

it is shown in the appendix that

—
outlet plane given-by

()
2

Cos px

Cos h
(22)

( )1]

H2411%XH- 1A 2x x
(23)

1 - e+

.

The loss coefficient for complete mixing is thus a function of the air
angle as well as of the wake momentum-thickness parameter and the form
factor in the outlet plane.

The calculated variation of ~,x with ;X for a range of values

of ~ froml.O to 2.6 and for & of 0° and 60° as obtained from

equation (23) is plott~ in figure 7. The figure shows that, unlike
the case for the local loss coefficient in the outlet plane (fig. 5),
the loss coefficient for complete mixing depends to a significant ex-
tent on the value of the wake form factor. The influence of the outlet
air angle ~x, however, is mnall.

Mixing-Loss Ratio

An indication of the additional loss incurred by the complete mix-
ing of the wake can be conveniently obtained from consideration of the
mixing-loss ratio; that is, the ratio of the loss for complete mixing to
the loss up to the outlet plane. ??comequations (23) and (18), the

. mixing-loss ratio is given, in terms of the wake characteristics in the
outlet plane, by

($~fi(,:r)[+p-si~~ (%-,:.x%j}:z.)

.

.. ..—----.. ..— _——-.—.— ——. - --——— .- — - — --—-—— —--



14 NACA TN 3662

A numerical evaluation of eQuation (24) in terms of ~ and $x

can be’obtained through the use of the representative relation between
K& and ~ given byequatiop (19). A plot of the veriation of mixing-

10ss ratio against ~ so obtained is shown in figure 8 for & of 0°

and 60”. Figure 8 reveals the general observation that the mixing-loss
ratio at a given outlet-plane location is determined primarily’by the
form factor of the wake in the outlet plane.

As ~ approaches 1.0 in figure 8, calculated v~ues of mixing-

10SS ratio less than 1.0 are obtained for values of f3x greater than O.

This result is obtained mathematically because of the independent manner

in which % and ~ are allowed to vary in the calculation. For an

actual wake profile, 8X and ~ do not vary completely independently;

and, at a value of ~ of 1.0, $x must be zero. Values of mtiing-loss

ratio less than 1.00 in figure 8, therefore, represent regions of unreal
flow.

The exact nature of the mixing-loss ratio as ~ approaches 1.0

can be demonstrated more clemly by examining the mixing-loss ratio of
a given wake velocity profile. For the power velocity profile of figure
3(a), for example, ~ can be expressed.in terms of ~ through equa-

tion (19), and & can be expressed in t~ms of ~ and the wake full

thickness parameter ‘~, where

by

(25)

(26)

Substitution of equations (19) and (26) into equation (24) then fields
for the power velocity profile

12%-

( ))

(27)
G&

l-%q+~

b!
m
m

.

.
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Plots of the variation of ~fi~x with ~ and ~x for the

power velocity profile are shown in figure 9 for a range of values of

6X. (The value of 3X = 0.6 corresponds approximately to ;X = 0.1.)

The convergence of the values of @fi~x to 1.0 as Hx approaches 1.0

is clearly indicated for all values of ~ in figure 9(a). The small

effect of air outlet angle on mixing-loss ratio for unstal.ledflow

0) (~< 2.0) iS sho~ in figure 9(b).
m
m
m Mixing-loss ratios were also determined for the other representa-

tive velocity profiles shown in figure 3. For a given wake velocity
distribution,K can be expressed in terms of H, and @ can be ex-
pressed in terms of H and the wake full thickness 5. Equations for
0 and K for the various wake profiles of figure 3 are given in table
I. The substitution of the relations for K and 6’ in table I into
equation (24) yields the mixing-loss ratio for the various profiles as

a function of ~, “&~ and @x in the general outlet plane. A compar-

ative plot of the calculated variation of (m%&)x with ~ for repre-

sentative limiting values of 8X and f3x is shown in figure 10 for all

five profiles. Figure 10 shows that the mixing-loss ratio maybe essen-
tially independent of the particular variation of the velocity in the
wake.

In summary, the preceding anA.lysisof the loss relations for the

wake in an outlet plane located from O to about l; chord lengths down-

stream of a cascade indicates that, for unstalled configurations,the
total-pressure-losscoefficient (as defined by eq. (12)) up to the out-
let plane is essentially a function of only the local wake momentum-
thickness parameter (eq. (17)). The ratio of the total-pressure loss
for complete mixing to the loss at the outlet plane depends primarily
on the form factor of the wake in the outlet @ane.

.

APPLICATION TO PLANE OF TRAILING EDGE

An outlet station of practical interest in cascade loss analyses in
the plane of the blade trailing edge, ~~herethe blade-surface boundary
layers come together to form the blade wake (station t, fig. 1). The
development of loss equations for the plane of the trailing edge can per-

.
mit the calculation of the loss in total pressure arising from the devel-
opment of the boundary layers on the blade surfaces; as determined from
blade boundary-layer theory..

d..——.—— --— ——. .--—-—- —--- -—–— -- -—.. .— ---- . . . . . .
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for the general analysis in the
one concerning the constancy of

the static pressure across the blade spacing maybe most questiona~le
in the plane of the trailing edge. It-is reco~ized that-static-pressure
gradients till normally occur in the plane of the blade trailing edge,
depending on the.blade circulation and surface curvatures; and, as a
consequence, the derived relations will not be an exact representation
of the flow. At present, three is no available information concerning
the effect of such gradients on the results of the simplified develop-
ments. It is believed, however, that the existence of the static-
pressure gradients normally encountered in conventional unstalled cas-
cade operation will not materially alter the principal conclusions and
trends of variation established from an analysis based on uniform static
pressure.

For simplicity, the case of zero blade trailing-edge thickness will
be considwed first.

Equations for Zero Trailing-Edge Thickness
.

In the plane of the trailing edge, under the assumptions of the
analysis and the condition of no blade trailing-edge thickness, the vsri-
ations of velocity and pressure in the y-direction will appear as shown
in figure n(a). The wake thicknesses at the trailing edge consist of
the wake thiclmesses of the upper- and lower-surface boundary layers, so
that

~= %,y + %,y
7

% = %,y + q,y

*Y= ‘%Y ‘%Y

~ . %,y + ~,y >
e
u,y + ‘z,y

~=ku,y+%,y
eU,y + % ,y

e~ . %,y% + ‘z,332~

(28)

A S~

normal to

equations

set of equations can readily be established for thicknesses
the air angle Bt through the cosine of the angle t3t as in

(14). The accuracy of this conversion to the normal wake
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thicknesses in the plane of the trailing edge is perhaps not as good as
it would be farther downstream, since the rates of change of the wake
properties along the direction of the flow are greatest in the region of
the trailing edge.

Loss at trailim edae. - The eauation for loss coefficient in the
plane of the trailing ed~e is then

3A
‘t = ‘t

or, with the K-H relation of the

a t
A = 2;t

~bta.inedfrom equation (18) as

1+%

(1 - 8tEJ3

power velocity

2%

3%-1

f? Ann\ 3
(J-

- ‘tnt~

where the 6’ and H values are determined as in

(29)

profile (eq. (19)),

.

equation (28).

(30)

The wake momentum thickness of equations (29) and (30) is normal to
the air outlet angle in the plane of the trailing edge, which may.not
necessarily be equal to the mean of the angles of ,thetangents to the
blade stiaces at the trailing.edge. Strictly speaking, since the re-
sults of surface boundary-layer calculations generally yield boundary-
layer properties normal to the blade surfaces, an adjustment for the
differences between these angles shouldbe made in the determination of
the wake thickness values for use in equation (30). However, such a
refinement is outside the accuracy of the present analysis.

For boundary-layer flow on blade surfaces, values of form factor H
may generally be obtained from about 1.3 to about 2.0 to 2.6 when sepa-
ration occurs. Furthermore, analysis of compressor cascade blade losses
reveals that separation in the low-loss range of incidence-angleopma-
tion is indicated for values of wake timentum-thicknessratio (9/c)
greater than about 0.02. Thus, for unseparated flow, for a high value
of solidity of about 1.75, and a high vslue of air outlet angle of about

60°, a momentum-thicknessparameter ~ of less than.about 0.07 is ob-

tained. Most blade sections will operate at values of ~ considerably
lower than 0.07 in their design regions of incidence angle. A practical
range of blade operation can therefore be represented for conventional
compressor cascades by values of ‘t from about 1.3 to about 2.2 and by

values of zt up to about 0.07. In this range, according to figure 5,

~ will not be very sensftive to the value of ~. Equation (30) can

. —. . ..—— ..—. ——.——— . —.—.. —— . __—
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then be simplified by taking ~, = 1.6 as a representative average
value to give

1.6@

6=
(1 - 1.6$t)3

.

(31)

Loss for complete mixinq. - The equation for the loss coefficient
for complete mixing based on the wake characteristicsat the trailing
edge is obtained from equation (23) as

-Theplot of Z5:,x against % in figure 7 shows that, for the practical

range of values of ;t and ~ at the trailing edge, the influence of

pt willbe very

lected by taking

be simplified to

small. The effect of outlet angle can therefore be neg-

pt = 0, so that, with little error, equation (32) can

(33)

LILJ

In the plane of the trailing edge, the power velocity profile is
considered to be most representative of the velocity variation across
the wake. Plots of the variation of the mixing-loss ratio (ZG*fi*)x

against ~ and 13x for the power velocity profile are shown in fig-

ure 9. Tn the range of values of Ht > 1.4, the full thickness parame-

ter $t and the air outlet angle 13t exefi only a secondq ~fluence

on the value of the mixing-loss ratio.

Effect of Trailing-Edge Thickness

Since practical blade sections are constructed with nonzero values
of trailing-edge thickness, the question of the effect of this thickness
on the totsl-pressure loss of the section is naturally raised. An accu-
rate theoretical evaluation of the thickness effect is not currently fea-
sible because of the complexity of the flow in the region of the trailing
edge. Apparently, ‘arapid
lower surfaces takes place
companying large localized

mixing between the flows along the upPer and - .
immediately behind the trailtng edge with ac-
gradients of pressure and flow angle. The

.

.
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precise nature of the flow in the
penalon the shape of the trailing

19

trailing-edgeregion is expected to de-
edge (i.e., whether the”trailing edge

is blunt or rounded). At any rate, the presence of a blade trailing-edge
thickness will affect the loss in total pressure because of the creation
of additional mixing losses.

It is possible, under the assumptions of the present analysis, to
determine the loss attributable to blade trailing-edge thickness by con-
sidering the flow immediately downstrem’ of the trailing edge to be a
“dead-ah” region. The additional loss will thus appear in the form of
a dumping loss. As indicated previously, the precise nature of the
trailing-edge flow is too uncertain for the present qualified analysis to
be expected to produce accurate estimates of the tiailing-edge-thickness
effect. However, the bends determined by this analysis should be correct.

According to the simplified picture of the trailing-edge effect, the
variations of velocity and pressure.in the y-direction @mediately behind
the trailing edge will appear as shown in figure n(b). The tmailing-
edge thickness appears only as an effective increase in the wake full and
displacement thicknesses, so that, for a trailing-edge thickness t,

5* ~+@+t=H+t
—=
e L9u -i- q- 3 (34)

Accordingly, the approximate equation for the loss coefficient for com-
plete mixing can be obtained by replacing Ht in equation (33) by

~ + ~@.t to give

where the trailing-edge thickness parameter $ is defined as

and ~ and at axe as

In order to examine
. for complete mixing, the

.

()t;=~
before.

the effect of
ratio of loss

CJ

Cos pt

(35)

(36).

trailing-edge thickness on the loss
coefficient with trailtig-edge

---- ------ ,.. — .-——. .— .-— —-—— --—-—- .—.——-. -.. ——— — -——-——— — -—-
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thickness 6Z (eq. (35)) to the loss coefficient for zero trailing-edge

(~~$~ (eq. (33)’]iS es~b~shed as

Equation (37) is based on the assumption that at and ~ (obtained

(37)

from the surface boundary-layer characteristics)are unaffected by
changes in the.blade trailing-edge thickness. A plot of the calculated
variation of the loss ratio of equation (37) against trailing-edge-
thickness parameter is shown in figure 12 for a range of values of $t
and ~.

The results of figure 12 indicate that the percentage increase in
loss due to mixing can be significant for large values of the trailing-
edge-thtcknessparameter. For conventional compressor blades with
trailing-edge-thicknessratios (t/c) of about 0.01 or 0.02 (and there- .

fore for $ up to about 0.035 or 0.070), the representative additional
loss, according to figure 12, could be of the order “of15 to 55 percent.
Although the loss magnitudes obtained by this simplifie$ianalysis are
certainly questionable, the figure does indicate that definite advantages
may be
sible.
tained

gained by maintaining trailing-edge thicknesses as small as pos-
Similar results of the trailing-edge-thicknesseffect were ob-
in references 3 and 11.

Discussion

The application of the derived loss equations to the plane of the
trailing edge permits the calculation of the cascade loss in total pres-
sure once the momentum thickness and form factor of the bkde-surface
boundary layers at the trailing edge are bown. A completely theoretical
determination of cascade losses can therefore be mde on the basis of
cascade boundary-layer theory and the trailing-edge loss relations pre-
sented herein. The reduced sensitivity of the loss coefficient to vari-
ations in ~ indicates that great accuracy in the theoretical determi-

nation of the boundary-layer values of ~ is not essential.

Because of the necessary assumptions involved in the developments,
the loss equations are expected to be most accurate for the case of zero
or nearly zero blade -&ailing-edge thickness. Further information con-
cerning the nature of the flow and boundary-layer characteristics in the
immediate vicinity of the blade trailing-edge region in the case of posi-
tive tiailing-edge thickness is desirable. .
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APPLICATION TO PLANE OF MEASURING STATION

In the previous section, the loss equations were expressed in terms
of the wake characteristics in the plane of the trailing edge. As such,
they presumed a knowledge of the growth of the tiundary layers on the
blade surfaces. In most cases of cascade investigations,however, the
losses are measured in a plane a short distance (say, from about 1/2 to
1 chord length) downstream of the cascade (station 2, fig. 1). At such

) distances, some mixing of the wake has already,taken place and the mini-
m
lo mum velocity in the wake is no longer zero. General cascade experience
In
M indicates that the wakes of conventional cascade configurationsare

clearly defined at the usual.measuring-station locations and that
P0,2 = PI. Thus, the loss developments for the measuring station are

expected to be more valid than at the trailing edge because of the
greater uniformity of the static pressure in the y-direction and the
smaller variation of the wake properties along the flow direction as
distance behind the blade is increased.

The variations of velocity and pressure along the y-direction in
the plane of the measuring station will appear as in figure 2. At the
measuring station, the wake can no longer be divided specifically into
its three components (suction-surfaceboundary layer, pressure-surface
boundary layer, and trailing-edge thickness).

Equations

The equations for loss coefficient up to the measuring station, for
loss coefficient for complete mixing, and for mixing-loss ratio ex-
pressed in terms of wake characteristics in the plane of the measuring
station are obtained from the respective general equations (eqs. (20),
(23), and (24)) by repl=ing the subscript x with the subscript 2
for the pertinent quantities involved. Simplifications of these equa-
tions can be obtained from consideration of the values of form factor H
generally observed at the measuring station.

It is known that wake form factor decreases with distance downstream
of the trailing edge and asymptotically approaches a value of 1.0. Ex-
perimental variations of wake form factor with distance downstream (ex-
pressed as the ratio s/c of distance along the wake to the airfoil
chord length) for low-speed isolated and cascade airfoils are shown in
figure 13. Apparently the decreake in H with distance is quite rapid.
According to figure 13, values of 1$ between 1.0 and 1.2 should repre-

sent practical limits for a measuring-station
chord length behind the blade.

.

For the loss coefficient in the plane of
(20)), figure 5 shows that the dependency of

location between 1/2 and 1

the measuring station (eq.
@ on H2 i.Sslight in

the range 1.0~H2< 1.2. For practical purposes, an average value of

— ------ __.—._—... ..———— ..-— — —
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E+ of 1.1 may be taken,

for the loss coefficient

For values Of Hz <

loss for complete mixing

so

@t

that, tith negligible

the measuring station

1.912$2

n= (1 .1.162)3

error,

can be

“NACA TN 3662

the equation

given as

(38)

1.2, the effect of air outlet angle ~2 on the
f,l

in the measuring plane essentially vanishes G
ul

(fig. 7), so that, from equation (23),

—* 1 + ; $2H;
0=,2 = 2$2

(1 - 82H2)2

If desirable, an average value of ‘~ = 1.1 may
equation for the loss for complete mixing.

(39)

also be used in the

According to the results of the mtiing-loss-ratio calculations
(figs. 8 and 9), for 1.0S H2 <1.2 in the measuring plane, very lit-

tle additional loss will accrue as a result of any further mixing of the
wake. Apparently, for a measuring station located from 1/2 to 1 chord
length downstream of
wake Idsng loss has

The accuracy of
the loss coefficient

the blade trailing edge, a considerable psrt of the
already occurred.

Comparison with

the loss equation
for a given value

Experiment

in predicting the magnitude of
of wake momentum-thicknessratio

was evaluated for the available experimental wake velocity-distribution
data at the usual me~uring station (refs. 7 to 10, e.g.). Integrations
of the low-speed experimental wake-velocity profiles of the blade sec-
tions of references 7 to 10 were conducted -todetermine the wake momentum
thickness, the wake form factor, and the mass-averaged total-pressure
loss in the plane of the measuring station. .

Since the experimental wake profiles in the references are plotted

/
in terms of the local values of V2/Vo,z or (P0,2 - P2) ~ PV~,2j it is

more convenient for comparison purposes.to use a loss coefficientbased
on outlet dynamic head, such that by definition

(m)2

E..2 ; p4,2
(40)

co
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where (@2 is the inte~ated mass-averaged loss in total pressure in

the measuring @ane (eq. (2)). The theoretical relation between loss
coefficient ‘~ and the wake characteristics is obtained from equations

(10) and (12) as

(m2 Cos pz 2()% = ~ m (1 - 32H2)2 = S(I - ‘52H2)2 (41)

m
2
m so that, llrom

For the usual.

equation (20),

= 2$2

measuring-station location (s/c

1.912$2

%=1
- 1.132

(42)

= 0.5 to 1), with ~ = 1.1,

(43)

ways: first, by using theLoss coefficients were determined in two
actual measured value of H2 in equation (42), and seco-ndlyby using

the representative value of H2 = 1.1 as in equation (43)(applicable

only within values of s/c = 0.5 to 1). Calculated and integated val-
ues of & for these data are compared in the following table:

T
Compressorblade,a. 15° 7
Compressorblade,a= 25° 7
Thinturningvane 8
Thick turning ve.ne 8
Compressorblade 9
Compressorblade 10

s/c H2 Integ.
(e/c)2

Integ. ~

(eq. (40))

Calc. Zi2

(w. (42)J
actual E+)

0.56 1.12 0.0151 0.0330 0.0338
.52 1.X5 .0130 .0269 .0271
.50 1.10 .00250 .0309 .0309
.50 1.14 .00506 .0591 .0583
.55 1.16 .00860 .0178 .0177
.02 1.51 .0163 .0287 .0287

%.lc. ~

(eq. (43
Hz = 1.11

0.0342
.0276
.0309
.0591
.0181

(.0319)

The close agreement between measured and calculated values of ~ in-
dicates the validity of the K-H relation for these limited data.

—.- - .--— —- —- - .—— .—---— - ——-—— ——- -. -— -— --—-—--—-—--— -——— --
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Discussion

The establishment of relations between the total-pressure loss and
the wake characteristics in the plane of the measuring station suggests
several considerations in the empirical prediction of cascade losses
and in the analysis of experimental cascade loss data. Since the total-
pressure-loss coefficient depends-primarily on the wake nmmentum-

thickness parameter
()

$2=:
a

three major quantities are cor3-
2 Cos J32’

.
tained in the loss prediction, namely, the momentum-thicknessratio O/c,
the solidity U, and the air outlet angle B2. The quantities a and

~2 depend primarily on the cascade geometry, so that the principal aero-

dynamic factor involved is the wake momentum-thickness ratio @/C (and
to a considerably smallw extent, the wake form factor). If generalized
correlations of wake momentum-thickness ratio can be obtained in terms
of the basic influencing parameters involved (e.g., velocity diffusion,
Reynolds number, Mach number, etc.), the use of these correlations, in
conjunction with the geometric characteristics of a particular cascade
configuration could then form the basis of a loss prediction procedure
according to the equations presented herein (eqs. (20) and (23)). The
desirability of expressing cascade loss data in terms of wake momentum-
thickness ratio is hereby indicated.

To date, experimental loss data have not generallybeen presented
in terms of wake momentum-thickness ratio. However, it should be pos-
sible to convert the available data expressed in terms of other loss
parameters (e.g., drag coefficient, total-pressure-losscoefficient,
etc.) to corresponding values of wake momentum-thickness ratio. For
example, a tiequently used cascade loss parameter is the loss coeffi-
cient ~, defined, in terms of the symbols used in this report, by

from equations (12) and (2o),

(44)

CN

H
UY

.

.
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(In eq. (45), an iteration solution is required because of the high
order to which 13/c appears.) Strictly speakingr the accurate solution
pf equation (45) requires a knowledge of the wake form factor. Hbwever,
for practical purposes, as was indicated previously, a representative
average value of H2 may be satisfactorilyused (say, an H2 of a%out
1.1) in the calculations. (Similar relations can bedmeloped for (e/c)2

in terms of loss coefficients based on outlet dynamic head, eq. (42)).

SUMMARY OF RESULTS

,Simpleapproxba.te equations have been developed to relate total-
pressure loss in an incompressibleplane cascade flow to the character-
istics of the wake in a plane downstream of the blade trailing edge.
Both the loss up to the plane and the complete los~after mixing have
been expressed in terms of the characteristics of the wake in the plane.
It was found that, for unseparated flow, the total-pressure-losscoef-
ficient was primarily a direct function of the wake momentum-thickness
ratio and the blade solidity and an inverse function of the cosine of
the air outlet angle. A secondary factor in the .determinationof the
loss coefficient was the value of the wake form factor H.

Application of the loss relations to the plane of the blade trail-
ing edge indicated that, if the blade-surface boundary-layer momentum
thickness and form factor at the trailing edge can be determined for a
given cascade configuration, the corresponding loss in total pressure
can be calculated according to the relations developed herein. From
the theoretical developments, it was shown that, for conventional values
of compressor blade trailing-edge thickness, the contribution of the
trailing-edge thickness to the total loss maybe significant. It was
also shown that the additional loss resulting flromthe mixing of the
wake can be a considerable percentage of the loss incurred at the trail-
ing edge, depending upon the initial value of the wake form factor.

In a similar manner, the loss up to the usual cascade measuring
station located from about 1/2 to 1 chord length downstream of the blade
and the loss after complete mixing have been expressed in terms of the
wake characteristicsat’the measuring station. _In view of the small
values of H indicated to occ~ at the measuring station, particularly
simple relations were obtained for the measuring station showing the
loss coefficient to vary effectively only with the wake momentum-
thickness ratio, the solidity, amd the air outlet angle.

●
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It was concluded from the analysis that the wake characteristics of
momentum-thicknessratio and form factor constitute significant param-
eters for the prediction of cascade losses and for the presentation and
correlation of two-dtiensionsl-cascadedata. The developments also pro-
vide a means for computing the wake momentum-thickness ratio fYom re-
prted values of loss coefficient.

Lewis Tlight Propulsion Idoratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, January 23, 1956

04
ul
ul
to

,



—

27

. .

NACA TN 3662

APPENDIX - LOSS COEFT’ICIENTFOR COMPLETE MIXING

Themass-averaged loss in total pressure between the inlet station
(station 1, fig.-6) and the far-downstream station (station CO,fig. 6)
where the wake has been completely mixed is given by

or, since PI

chord lengths

= Po,x where the wake is well-defined (O to about l;

downstream of the cascade),

(AF)m = Po,x - P= (21)

For conservation of momentum in the axial direction (fig. 6)

Y

J

Pv:,.dy -1-2Ypx = 2YPV:,= + 2YP. (Al)

-Y

Substituting for Px and p- through the Bernoulli equation (eq. (3))

in equation (Al) gives

2
1 V2++

2 1
J?(),X - pm = Pvz,m-~P=

J
Pvo,x - ~ PV;,Xdy

-Y

or

The problem now is to express Vz,= and cos

ditions in the outlet plane. FYom conservation of
gential direction (fig. 6),

J -y

Pm in terms of con-

momentum in the tan-

r Qvz>xvy,xdy = 2YPVZ,JY,* (M)

-Y

Using the relation ‘Y =
Vz tan f3,equation (A3) becomes

Y2

J
t~ P. -y Vz,xdy

tan 13==
2YV2Z,w

. .-— — — -— — -—— -— —----— ---- -—..— .——- —..
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Therefore,

i o )
&

(*,-)2 +tan2f3x
‘2
~z ,Xdy

-Y

For the conservation of mass flow,

““Y-s Pvz,Xdy = 2Y pvz, m

-Y

.

(A4)

or

Then, in terms of boundsry-layer characteristics,

(A6)

Substitution of equations (A4) and (A6) into equation (A2) gives

(m. ,,.,,co2,x[&]-,~p,,.y=;P’&x+$Pv&
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.
or, factoring out ~ pV~,x,

.

(()(An+5v; ,x 1+ 1.Z2Cos%x
x

2

“++ )

Y
2

tal%
()
~ dy

1-

JT )

V2

-Yqcof% ‘+ -,% “(2Y)2 l-m

.

Now,

= 2-YCos’px (’-=).

(A7)

(M)

-- —-.. . -..+— --- —-—---- —.-—.-— -—-. —-———— —— — ------ .. .—. —-————
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The expression of Vo,x

substitution of equation
reducing,

NACATN 3662

in terms of Vl from equation (10) and the

(A8) into equation (A7) then yields, after “

With the use of equations (14) and the definitions of solidity,

form factor

(A9) can be
by equation

H, and momentpm-thicknessparameter ; (eq. (19)), equation

expressed in terms of the loss coefficient ?E&, defined
(22), as

2$X+
a)

“’x “ (1 - E&&

With the use of the identity cos2p = 1 - sin2~, equation

(Aio)
1 ‘,

(AIO) becomes

.1- z

exsin px

2(1 - a#J2 1
Factoring and reducing of terms then yields for the loss coefficient for
complete mixing

(
2

<- sin2$x ~ - ;
)]}

(23)
1 - exHx
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